Strongly Incremental Constituency Parsing with Graph Neural Networks

Kaiyu Yang and Jia Deng

Constituency Parsing

Shift-Reduce Parsers

Arthur is King of the Britons
\uparrow

Shift-Reduce Parsers

Arthur is King of the Britons \square

- SHIFT: Move the next word into the stack

Shift-Reduce Parsers

\square
Arthur
is King of the Britons

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP)

Shift-Reduce Parsers

is King of the Britons

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP)

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP), shift

Shift-Reduce Parsers

King of the Britons

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP), shift, shift

Shift-Reduce Parsers

of the Britons

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP)

Shift-Reduce Parsers

of the Britons

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP)

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP)

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP)

Shift-Reduce Parsers

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack
shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP), binary_reduce(NP)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP), binary_reduce(NP)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP), binary_reduce(NP), binary_reduce(VP)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP), binary_reduce(NP), binary_reduce(VP)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP), binary_reduce(NP), binary_reduce(VP), binary_reduce(S)

Shift-Reduce Parsers

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP), binary_reduce(NP), binary_reduce(VP), binary_reduce(S)

Strongly Incremental Parsing

- Shift-reduce parsers differ from human parsing
- Human parsing appears to be strongly incremental
[Marslen-Wilson, 1973]
[Sturt and Lombardo, 2005]
[Stabler, 2015]

Strongly Incremental Parsing

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less

Strongly Incremental Parsing

is King of the Britons

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less

Strongly Incremental Parsing

is king of the Britons \uparrow

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less

Strongly Incremental Parsing

King of the Britons

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less

Strongly Incremental Parsing

King of the Britons

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less

Strongly Incremental Parsing

of the Britons

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less

Strongly Incremental Parsing

- Human parsing appears to be strongly incremental:
- One word per step: no more, no less
- A single connected partial parse tree

Attach-Juxtapose Transition System

- We propose a strongly incremental transition system named attach-juxtapose

Attach-Juxtapose Transition System

- We propose a strongly incremental transition system named attach-juxtapose
- The state is a partial tree and the next word
- Actions determine where and how to integrate the next word

of the Britons

Where to Add the New Word?

- The new word is to the right of existing words, so it must appear on the rightmost chain

of the Britons

Where to Add the New Word?

- The new word is to the right of existing words, so it must appear on the rightmost chain

of the Britons

How to Add the New Word?

How to Add the New Word?

How to Add the New Word?

How to Add the New Word?

How to Add the New Word?

How to Add the New Word?

How to Add the New Word?

How to Add the New Word?

Action Generation with Graph Neural Networks

- Encoder: BERT/XLNet + additional self-attention layers

Action Generation with Graph Neural Networks

- Encoder: BERT/XLNet + additional self-attention layers
- Decoder: Generate attach-juxtapose actions by applying GNNs on the partial tree

Action Generation with Graph Neural Networks

- Encoder: BERT/XLNet + additional self-attention layers
- Decoder: Generate attach-juxtapose actions by applying GNNs on the partial tree

Experimental Results

- Competitive with state of the art on Penn Treebank

Model	EM	F1	LP	LR	\#Params
Liu and Zhang [22]	-	91.8	-	-	-
Liu and Zhang [22] (BERT) ${ }^{\dagger}$	57.05	95.71	-	-	-
Kitaev and Klein [21]	47.31	93.55	93.90	93.20	26M
Kitaev and Klein [21] (ELMo)	53.06	95.13	95.40	94.85	107M
Kitaev et al. [20] (BERT)	-	95.59	95.46	95.73	342M
Zhou and Zhao [49] (GloVe) *	47.72	93.78	93.92	93.64	51 M
Zhou and Zhao [49] (BERT) *	55.84	95.84	95.98	95.70	349 M
Zhou and Zhao [49] (XLNet) *	58.73	96.33	96.46	$\underline{96.21}$	374M
Mrini et al. [27] (XLNet) *	58.65	96.38	$\underline{96.53}$	96.24	459M
Ours (BERT)	57.29 ± 0.57	95.79 ± 0.05	96.04 ± 0.05	95.55 ± 0.06	377M
Ours (XLNet)	$\mathbf{5 9 . 1 7} \pm 0.33$	$\underline{96.34} \pm 0.03$	96.55 ± 0.02	96.13 ± 0.04	391M

Experimental Results

- Competitive with state of the art on Penn Treebank
- Improves upon state of the art on Chinese Treebank

Model	EM	F1	LP	LR
Kitaev et al. [20]	-	91.75	91.96	91.55
Kitaev et al. [20] (BERT) †	44.42	92.14	-	-
Zhou and Zhao [49] *	-	92.18	92.33	$\underline{92.03}$
Mrini et al. [27] (BERT)				
Liu and Zhang [22] $^{\text {Liu and Zhang [22] (BERT) }}{ }^{\dagger}$	-	$\underline{44.94}$	$\underline{92.64}$	$\underline{93.45}$
Ours (BERT)	$\mathbf{4 9 . 7 2} \pm 0.83$	$\mathbf{9 3 . 5 9} \pm 0.26$	$\mathbf{9 3 . 8 0} \pm 0.26$	$\mathbf{9 3 . 4 0} \pm 0.28$

Strongly Incremental Constituency Parsing with Graph Neural Networks

Kaiyu Yang and Jia Deng
https://github.com/princeton-v//attach-juxtapose-parser

