Generating Natural Language Proofs with Verifier-Guided Search

Kaiyu Yang, Jia Deng, and Danqi Chen
Department of Computer Science, Princeton University

Generating Natural Language Proofs

- **Input:** a hypothesis h and a set of supporting facts $C = \{s_{ent_1}, s_{ent_2}, ..., s_{ent_n}\}$ in natural language
- **Output:** a proof tree P for deriving h from a subset of C
 - The root node is h; the leaf nodes are sentences in C
 - Others are intermediate conclusions generated by the model

Our Method: NLPoofs

- **NLPoofs (Natural Language Proof Search)**
 - A new method for stepwise proof generation
 - Prover: Generate relevant steps conditioning on the hypothesis
 - Verifier: Mitigate hallucination by training an independent network to check the proof steps
 - Proof search: Use the prover/verifier to generate the final proof with the optimal validity score

Prover

- Fine tune a T5 model to predict the next proof step
- Generate multiple candidate steps via beam search

Verifier

- Input: A proof step (multiple premises, one conclusion)
- Output: A score in $[0, 1]$ calculated by finetuning RoBERTa
- Step scores are aggregated to calculate proof scores

Proof Search

1. Initialization: a proof generated by the prover alone
2. Iteration: expand the graph iteratively
 - Using steps proposed by the prover
 - Checked by the verifier
 - Average verifier/prover scores
3. Extraction: proof tree with the best score

Experiments

- **State-of-the-art on two benchmarks**
 - RuleTaker [Tajfard et al. 2021]: Simple, synthetic proofs
 - EntailmentBank [Dalvi et al. 2021]: Challenging, human-written proofs

- **Main Results on EntailmentBank**
 - Single-shot baselines: EntailmentWriter
 - Stepwise baselines: IRGR [Ribeiro et al. 2022], MetGen [Hong et al. 2022]

- **Ablations: Importance of Stepwise Verifier-Guided Search**

- **Large Language Models w/ In-Context Learning**
 - Single-shot proof generation with 7 in-context examples
 - GPT-3 and Codex cannot solve the task out of the box

Challenges in Generating Valid and Relevant Steps

- Existing stepwise methods struggle to generate proof steps that are both valid and relevant
 - **Condition on premises only:**
 - Many valid steps are irrelevant (not useful for proving the hypothesis)

 - **Condition on premises + hypothesis:**
 - Hallucinate invalid steps
